Photoelectron Emission Microscopy Studies of Carbon Overturn in Lake Sediments from the Alaskan Coastal Plain

Heidi Bialk
University of Wisconsin-Madison
Global Research Environmental Fellowship
June 2002

Introduction

- Why study carbon cycling in the arctic tundra?
- What are some strategies for quantifying carbon turnover rates?
- Current progress
- Conclusions

The Big Picture

- Cellulose and lignin compose cell walls in vascular plants
- Carbon turnover gradually converts original cell wall material into humified products and CO₂
- Quantifying lignin in peat may allow estimates of carbon accumulation rates during the life span of thaw lakes

Lignin Precursors

The Arctic Tundra: Thermal Karst Lakes

- Arctic tundra plays a crucial role in carbon sequestration
- The formation of thermal karst lakes serves as a climatic record
 - Patterned ground develops from annual freezethaw cycles
 - Water accumulating in depressions acts as a thermal sink thinning the underlying permafrost
 - Peat accumulates in shallow thaw lakes
 sequestering carbon until erosion drains the lake

Thermal Karst Lakes

Introduction Cont'd

- Why study carbon cycling in the arctic tundra?
- What are some strategies for quantifying carbon turnover rates?
- Current progress
- Conclusions

Chemical X-ray Techniques

- Sample Preparation
 - embedding
 - plating

Chemical X-ray Techniques Cont'd

- Sample Preparation
 - embedding
 - plating
- Photoelectron Emission Microscopy
 - spatial data

Chemical X-ray Techniques Cont'd

- Sample Preparation
 - embedding
 - plating
- Photoelectron Emission Microscopy (PEEM)
 - spatial data
- X-ray Absorption Near Edge Spectroscopy (XANES)

Carbon K-edge Spectrum

Oxygen K-edge Spectrum

Nitrogen K-edge Spectrum

Introduction Cont'd

- Why study carbon cycling in the arctic tundra?
- What are some strategies for quantifying carbon turnover rates?
- Current progress
- Conclusions

Outlook

- Developed a normalization procedure to provide better quality data (quantitative x-ray data requires improved methods for reliable measurement)
- Combine data with Nuclear Magnetic Resonance (NMR) spectra
- Discriminating original cell wall materials from humified products appears feasible

Introduction Cont'd

- Why study carbon cycling in the arctic tundra?
- What are some strategies for quantifying carbon turnover rates?
- Current progress
- Conclusions

Future Directions

- Establish a link between chemical analysis and microbiology via lipid/enzyme analysis
- Eventually combine data with pollen analysis (climate -> carbon storage -> responsible microbial populations)

Acknowledgements

- Dr. Will Bleam
- Synchotron Radiation Center (Stoughton, WI)
- Cooperators: Dr. James Bockheim (UW-Madison), Brad Frazier (SRC)
- Funding: Global Research Environmental Fellowship (GREF)

Carbon K-edge

Carbon K-edge

Alaskan Peat

Oxygen K-edge

Nitrogen K-edge

